Эффективное прогнозирование спроса |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
ГЛАВНАЯ СКЛАД ** управление складом ** техника для склада ** оборудование для склада ТРАНСПОРТИРОВКА ** река / море ** авиа ** ж/д дорога ** грузовик ЛОГИСТИКА ** стратегическое планирование ** управление запасами ** документооборот в логистике ** служба снабжения ** системы автоматизации ВЭД ** ИНКОТЕРМС ** Таможенные формальности БИБЛИОТЕКА ** книги для ознакомления ** полезные материалы ПОЛЕЗНОЕ
|
Обычно именно отдел логистики жалуется на отсутствие точных прогнозов, поскольку слишком многое в его работе зависит от них. Но не всегда менеджеры понимают, о какой степени точности можно говорить в данном случае и как можно решать эту проблему. Прогнозирование спроса или другого по определению есть взгляд в будущее, поэтому оно никогда не будет абсолютно точным. То есть разрабатывать логистическую систему нужно таким образом, чтобы она не полностью зависела от точности прогнозирования спроса, а была гибкой и могла адекватно реагировать на те или иные изменения в спросе. Пронозирование спроса позволяет эффективно наладить работу отдела логистики, так как исходя из прогнозирования спроса логист может составить прогноз поставок, т.е. прогнозирование спроса помогает отделу логистики составить прогноз предложения. При прогнозировании спроса надо быть очень акккуратным, так как любая ошибка в прогнозировании спроса может привести к плачевным результатам. Прогнозирование спроса не должно стать целью, а только средством. Причем каждый день надо обновлять прогнозирование спроса, чтобы оно было актуальным, ведь прогнозирование спроса есть взгляд в будущее продаж, а это очень важно.
И в то же время нельзя считать, что прогнозы ничего не дают. Разумеется, они должны быть неотъемлемой частью работы отдела логистики (планирования). Но чтобы правильно их использовать, нужно знать их основные свойства. 1. Точность прогнозирования спроса выше для групп продуктов, чем для индивидуальных продуктов. Попытайтесь, например, предсказать рост первого встречного прохожего. Требуется большое везение, чтобы сделать это точно: он может оказаться как баскетболистом, так и карликом. Но прогноз «среднего» роста ста прохожих может быть достаточно точным. Прогноз для группы точнее прогноза для ее отдельного представителя, поскольку в этом случае происходит «взаимопогашение» отклонений: в одном случае прогноз завышен, в другом – занижен, но в целом он вполне приемлем. Это отражено на рис. 1. Рисунок 1. Точность прогнозов зависимости от анализируемого параметра2. Точность прогнозов выше для близкой перспективы, чем для дальней. Так, прогнозировать семейный бюджет на следующий месяц гораздо проще, чем на тот же период, но через год. Прогнозирование подобно стрельбе: чем дальше от цели, тем труднее в нее попасть. Часто от руководителя отдела логистики приходится слышать: «Вы только дайте нам заказы на как можно более продолжительный период, и мы обеспечим их на 100%». Однако по указанной причине подобный подход к прогнозированию спроса работает против заказчиков: при разработке плана закупок и производства вероятность ошибки в этом случае резко возрастает. Менеджеру по планированию производства в действительности не нужно знать, какие наименования он будет производить в какой-то отдаленный период времени. Он должен знать, какие мощности ему потребуются. Этот прогноз менее сложен и вместе с тем более точен, чем детальное прогнозирование спроса. В таблице 1 представлена матрица прогнозирования спроса в зависимости от уровня детализации и горизонта планирования. Таблица 1. Матрица прогнозов спросаЭта таблица позволяет сделать следующие выводы.
ЗАЧЕМ ДЕЛАТЬ ПРОГНОЗИРОВАНИЕ СПРОСАСуществуют условия, при которых делать прогнозирование спроса вообще не целесообразно:
Во всех остальных случаях без прогнозирования спроса не обойтись. Однако формировать прогнозы спроса нужно ровно настолько, насколько этого требуют конкретные цели. Каждый из перечисленных ниже параметров прогнозов спроса должен быть обоснован целью его использования и определен до начала формирования прогноза. – Горизонт планирования. На какой период в будущем должен быть составлен прогноз? 10 лет? 12 месяцев? Неделя? – Уровень детализации. Должен ли прогноз спроса отражать конечные продукты по заказчикам? Или достаточно суммарного плана по категориям? – Частота пересмотра. Требуется ли прогноз спроса пересматривать раз в год? Раз в квартал? Раз в месяц? Раз в неделю? Каждый день? Каждый час? – Интервал прогнозирования. Какие временные промежутки должен отражать прогноз спроса? Годы? Месяцы? Недели? Дни? МЕТОДЫ ПРОГНОЗИРОВАНИЯ СПРОСАСуществует много классификаций методов прогнозирования спроса. Для удобства можно выделить всего две группы: экспертные и статистические. Первые основаны на экспертных оценках и по своей природе субъективны. Суть их заключается в переведении различных экспертных мнений в формулы, из которых формируется прогноз. К экспертным методам относятся: метод комиссии, «мозговая атака», анкетный опрос, метод Дельфи. Статистические методы предполагают применение статистических расчетов для построения будущего на основе прошлого. Типичный пример – методы исчисления средних. Один из них – применение скользящей средней величины. Предположим, компания захотела использовать скользящую среднюю величину за 12 недель для прогноза спроса какого-либо товара. Для этого суммируют продажи за последние 12 недель, сумму делят на 12, получая таким образом среднюю величину. Через 7 дней добавляют продажи за последнюю неделю и отбрасывают первую неделю, получая данные опять за 12 недель. В этом случае мы говорим об использовании простой средней. Пример расчета: Старый прогноз (месячные продажи) – 100 ед. Фактические продажи (последний месяц) – 80 ед. Новый прогноз (простая средняя) – 90 ед. Один из очевидных недостатков этого метода заключается в том, что фактическим продажам придается такой же вес, как и старому прогнозу. Обычно лучше придать больший вес старому прогнозу и меньший – текущим продажам, так как последние могут представлять собой случайную вариацию, единственную в своем роде. Весовые коэффициенты логичнее определить в 0,8 и 0,2 (в сумме они обязательно должны равняться 1,0). Тогда среднюю величину исчисляют так: Старый прогноз – 100 x 0,8 = 80 ед. Фактические продажи – 80 x 0,2 = 16 ед. Новый прогноз (взвешенная средняя) – 80 + 16 = 96 ед. Этот метод называется экспоненциальным сглаживанием. Весовой коэффициент, приданный текущим продажам (в данном случае 0,2) называют альфа-множителем. Экспоненциальное сглаживание представляет собой исчисление взвешенной скользящей средней. Преимущество этого метода в том, что он упрощает вычисления и часто позволяет хранить меньший объем данных. При экспоненциальном сглаживании требуются данные о «старом прогнозе» и альфа-множителе. Еще более важна гибкость метода. Если прогноз занижает действительный спрос, аналитик способен вручную ввести скорректированный прогноз в систему и приступить к сглаживанию. Это значительно удобнее, чем пытаться скорректировать расчет скользящей средней величины. При использовании регрессионного и корреляционного анализа рассчитывают формулы, которые придают различный вес «индикаторам», связанным с прогнозируемыми товарами или группами товаров. Например, закладка жилых домов оказывает определенное влияние на продажу металлических изделий строительным фирмам. Динамика валового национального продукта (ВНП), вероятно, тоже оказывает влияние. Таким образом, учитывая степень важности влияния того или иного фактора, можно построить формулу для прогноза суммарных продаж металлоизделий для строительства. При этом особенное внимание нужно уделять ведущим индикаторам, то есть тем, значение которых увеличивается или уменьшается до того, как начнут изменяться прогнозируемые продажи. Правда, использование такого рода индикаторов может принести пользу лишь в том случае, если оно опирается на здравый смысл. Влияние факторов, которые были очень существенны в прошлом, может измениться с течением времени, а потому для них нужно будет применять другой весовой коэффициент. И здесь не обойтись без экспертной оценки. Следует также помнить, что ни один из указанных методов не может компенсировать или учесть воздействие на спрос других факторов. Например, если продавцы металлических изделий из-за финансовых затруднений решили сократить запасы, зависимость между закладкой домов и продажей металлоизделий не даст точного прогноза. Возросшая иностранная конкуренция также может оказать решающее влияние на динамику продаж. В реальной практике необходимо использовать простые статистические методы в сочетании с разумным экспертным суждением. Кроме того, выбор метода прогнозирования может и должен определяться параметрами необходимого прогноза (горизонт планирования, уровень детализации и пр.). Например, для составления прогноза спроса для бизнес-плана на 10 лет целесообразнее использовать методы экспертных оценок, нежели статистические. ИЗМЕРЕНИЕ ОШИБКИ ПРОГНОЗАДля эффективного прогнозирования спроса необходимо регулярно измерять отклонения фактических продаж от прогноза. Ошибка прогноза (Forecast Error) – это абсолютная разница между фактическим и прогнозируемым спросом. Для измерения отклонений может использоваться стандартное отклонение (SD, сигма) или среднее абсолютное отклонение (MAD). Стандартное отклонение – это широко известная статистам мера измерения разброса и вариабельности. Но практики прогнозирования спроса предпочитают среднее абсолютное отклонение из-за легкости его расчета: MAD рассчитывается как сумма абсолютных отклонений, разделенная на количество измерений (периодов). Пример приведен в таблице 2, из которой видно, что среднее абсолютное отклонение отражает вариабельность отклонений в течение периода (несмотря на то что общая сумма отклонений равна нулю). Пример иллюстрирует случайные отклонения (random variation). Это такие отклонения, при которых сумма прогнозов за период равна или почти равна сумме фактических продаж. Таблица 2. Расчет среднего абсолютного отклонения
Кроме случайных, встречаются систематические отклонения в одну сторону, именуемые смещением (BIAS). Пример показан на рис. 2. Смещение оказывает значительное негативное влияние на систему управления производством и запасами. Другими словами, оно означает занижение или завышение прогноза спроса. Кроме очевидной неопределенности, причинами смещения могут быть различные факторы. Рисунок 2. Смещение (BIAS)1. Занижение прогноза спроса может совершаться с целью:
2. Завышение прогноза спроса может совершаться с целью:
В результате смещения прогнозов спроса в ту или иную сторону возникают самые печальные последствия: невыполнение заказов клиентам в срок, незапланированные простои производства либо переработки, увеличение уровня запасов и т. д. Соответственно необходимо в первую очередь анализировать причины смещений, чтобы избегать их в будущем. С ЧЕГО НАЧАТЬ?Эффективное прогнозирование спроса, равно как и любой другой бизнес-процесс, состоит из трех взаимосвязанных элементов: люди, процесс, инструменты. ЛЮДИПри проектировании процесса прогнозирования спроса нужно учесть следующие факторы:
Рассмотрим несколько базовых вариантов организации маркетинга и продаж. Пример 1. Функции маркетинга и продаж находятся в одном подразделении, руководитель которого подчиняется непосредственно первому лицу организации. Пример 2. Подразделения маркетинга и продаж обособлены, их руководители подчиняются непосредственно первому лицу организации. Пример 3. В компании более одного подразделения маркетинга и продаж, каждое из которых подчиняется непосредственно первому лицу организации (например, подразделения разделены по группам клиентов). В первом случае все просто: процесс прогнозирования спроса находится в зоне ответственности руководителя подразделения маркетинга и продаж. Во втором и третьем примерах передача функций прогнозирования спроса одному из подразделений может спровоцировать дисбаланс в продажах. В этих случаях уместнее сделать ответственным за прогнозирование спроса третью сторону – департамент логистики (цепи поставок). Многие организации, соответствующие второму и третьему примерам, создают даже специальную должность менеджера по планированию спроса (Demand Manager). ПРОЦЕССЭффективное прогнозирование начинается с повышения качества входящей информации. Сбор входных данных должен быть организован с определенной регулярностью и в определенном формате. В частности, нужно выполнять следующие правила. 1. Необходимо собирать статистические данные с теми же параметрами, которые нужны для прогноза спроса. Если требуется составить прогноз спроса на продукцию, должны использоваться статистические данные, основанные на спросе, а не на отгрузках промежуточным з |